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Coulomb Interactions in a Strong Magnetic Field. II. Nonadiabatic Case. 
Line Profile of Cyclotron Radiation* 
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Using the generalized quantum treatment of pressure broadening by Anderson, we derive an expression 
including the effects of both adiabatic and nonadiabatic transitions for the emission spectrum of cyclotron 
radiation from free-charged particles undergoing Coulomb interactions with fixed scatterers in typical 
plasma situations. After adapting the formalism to account for the continuous nature of the energy states 
parallel to the magnetic field, and after including the energy dependence of the dipole matrix element, one 
obtains half-width values for the cyclotron line in the case of a strong magnetic field. Extension to the weak 
field case can then be made in a plausible manner, resulting in the ordinary Coulomb cross section for 
vanishing magnetic field strength. 

1. INTRODUCTION 

PREVIOUSLY1 the variation in the spatial part of 
the wave function in the determination of the cyclo­

tron radiation spectrum was neglected. In the limiting 
case where the kinetic energy E of the particle is large 
compared with the cyclotron photon energy, the major 
portion of the cyclotron line's half-width is caused by 
this variation. It is the purpose of this paper to derive 
explicitly the contribution from such transitions to the 
scattering cross section, and to calculate in particular 
the half-width of the cyclotron line. Bremsstrahlung 
contributions, which do not significantly alter the fre­
quency dependence of the spectrum in the neighborhood 
of the cyclotron resonance will be considered in a sub­
sequent paper. It is assumed that the scattering centers 
are stationary so that, for instance, the contributions 
from electron-electron collisions are omitted. 

In this paper and in I the variations resulting from 
the Coulomb interaction in the time-dependent parts of 
the phase factor of the magnetic field eigenfunctions 
are called adiabatic, whereas the changes in the various 
spatial quantum states are termed nonadiabatic. For 
the weak collisions which dominate in the study of 
coulomb scattering, those variations which we have 
termed adiabatic and which are calculated using the 
unperturbed eigenfunctions for the electron in the mag­
netic field, agree closely with the results from the ordinary 
adiabatic treatment. The latter results use eigenfunc­
tions of the instantaneous particle Hamiltonian during 
the scattering, with the assumption that there are no 
transitons between different eigenfunctions. For weak 
collisions the effects which we have called adiabatic 
and nonadiabatic are additive. 

To account for the nonadiabatic contributions to 
cyclotron radiation it is necessary to calculate the 
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1 R . Goldman and L. Oster, Phys. Rev. 129, 1469 (1963). Here­
after this reference will be called Paper L 

transition probability as a result of coulomb inter­
actions between quantum states for the electron in a 
strong magnetic field. A similar approach was used by 
Tannenwald2 who was able to obtain approximate values 
for transition probabilities. However, the similarities 
and differences between the situation in a strong mag­
netic field and the case of ordinary coulomb scattering 
were obscured due to the inaccuracies in the values for 
the transition probabilities. More recently, the collision 
integral has been studied in connection with particle 
diffusion across a magnetic field3 where it was found 
necessary to introduce a long-distance cutoff as a result 
of shielding interactions in the plasma. 

Treating the interaction in the Born approximation 
we calculate the transition probabilities to high ac­
curacy, and obtain a clear picture of maximum impact 
parameters and deviations from coulomb scattering. 
Results are then extended to lower energies where the 
Born approximation does not hold.4 

We begin by summarizing Anderson's line-broadening 
theory5 altering the formalism as we go along to account 
for the continuous nature of the electron energies 
parallel to the magnetic field (Sees. 2 and 3). In Sec. 4 
we justify the use of semiclassical approximations by 
comparison with the strictly quantum-mechanical ap­
proach. After evaluating the general form of the cross 
section in Sec. 5, we specialize to the case of a strong 
magnetic field (Sees. 6 and 7). After giving a physical 
interpretation in Sec. 8 we turn to the case of weak 
magnetic field in Sec. 9. Finally in Sec. 10 the results 
are summarized for ready reference, and in Sec. 11 
illustrative examples are presented. 

2. FORMAL SOLUTION OF THE PROBLEM 

Classically one has for the intensity of emission 
I(u>) at frequency co for the time interval from 0 

2 L . M. Tannenwald, Phys. Rev. 113, 1396 (1959). 
3 V. M. Eleonskii, P. S. Zyryanov, and V. P. Silin, Zh. Eksperim. i 

Teor. Fiz. 42, 896 (1962) [English translation: Soviet Phys,— 
JETP 15, 619 (1962)]. 

4 E. J. Williams, Rev. Mod. Phys. 17, 217 (1945). 
« P. W. Anderson, Phys. Rev. 76, 647 (1949). 
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Taking the average of the trace for a given quantum 
state of the electron over all possible ionic collision 
locations, one has on performing the first time 
integration 

/ ' 

Xexp(-iwt)dtl y (0exp( -w0*i , (la) /(w) = const2 Re E Tr["po/" drexp(-i 

X ^ r - ^ o - V a W a J , (8) 

-iter) 

where y is the classical dipole moment of the radiating 
particle. 

On the other hand, the theory of Anderson5 gives as 
a quantum-mechanical expression for the time average W l t h R e d e n°tmg the real part of the expression to 

- - follow, and r= | ^—/ | . Removing UQ with the aid of 
Eq. (5), we have 

/(«) = const lim T " E Tr {p0 
y-*oo a 

of spontaneous emission 

, / dt dtf 

Jo Jo 

Xexpl-i<a(t'--t)']iia(t)U-1(t -> /') 

XHa(t)U(t-*tT) 

I ((a) = const2 Re / E E exp[(cocd— )̂ir~]pa 
J o a,b,c,d a 

(lb) 

X{(a\^\b)lb\T-Kr)\c3(c\fxa\d) 

• [ d | r ( r ) [ a ] M r , (9) 

where the sum over a, b, c, and d corresponds to the 
Here p0 is the density matrix, \xa is the spatial component t r a c e operation, and the frequency 
of the dipole matrix element in an arbitrary a direction, a> d—(E ~E )/h (10) 
and U is a time-development matrix which will be 
defined shortly. refers to the quantum states c and d. 

Taking the Hamiltonian for a beam of electrons in a The problem is therefore to evaluate for a given a 
magnetic field to be and b (with Ec~Ed fixed) 

H=HQ+H', (2) Cft | r-Kr)k](c | | i« |rf)P|r(r) |alv=/5 i a(r) . (11) 

where tfo is the magnetic contribution and W is the n c a n b e s h o w n r i s l t o a n a c c of6 
collision interaction contribution, the matrices U and 
U0 are defined such that (Eb-Ec)/(Eb+Ec) that 

(3) [ft |r-i(r) |*] 

(4) ^ U e x p U - f * ) - 1 / " f /o-W^o^lL} (12) 
where <j)n(t) is the wave function at time t due to the ° ' 
interaction of the magnetic field alone, and 0n"(O is the (t is now a dummy variable). 
wave function due to both the magnetic field and the The collision Hamiltonian for a given electron is made 
coulomb collision interactions. (Here Hf may be up of the sum of the separate Hamiltonians for each ion 
thought of as explicitly time-dependent; we agree how- with the given electron. Therefore we have 

*»'(#= tfo(0*»(0), 

*»"(/) =J7(*)tf»(0), 

ever to choose the time dependence of Hf so that the 
transition probabilities for single electron-ion inter­
actions are identical to those of the Born approximation. 
The difference between this variation and that from the 
straight-line approximation will be shown in Sec. IV.) 

For a quantum state a with energy Ea we have 

[_a | U0(t) 1&]= 8ab expZEj/ih']. 

Defining a matrix operator T by 

T=Uo-lU 

Lb\r-Kr)\c\ 

(5) 

(6) 

n e x p f - ^ ) - 1 / * Uo-'HModt |L1 , (13) 

where the running index designates the *>th ion in the 
plasma. For the *>th ion, one obtains 

we obtain instead of Eq. (lb) 

1(a)) = const lim — E Tr \ p0 , / dt dt1 

Jo Jo 

XexpZ-icoit'-t^atyT-iUo-WUoT \. (7) 6The 

| b exp| - (ih)-1 I Uo-'HModt 

X \b 1 - (ih)-1 J Uo~lHvUodt+ (2 I ) - 1 ^)" 2 

xf Uo~lHvUodt( Uo^H^odtlc], (14) 
Jo Jo I -J 

error stems from the neglect of noncommuting terms in 
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since Hv is equal to zero except for some time centered 
around an arbitrary r. 

Letting T=to+t\ we may write 

[ a | tfo(r) 1&] = 8ah expKift^JEaC/o+O]- (15) 

Then the above expression (14) is of the form7 

e x p K * * ) - 1 ^ - ^ ) * ) ] ^ i ( * , c ) , (16) 

where K\ depends on the quantum states b and c and 
the Hamiltonians, but not on t0. For the same reasons 
the corresponding element for T(T) is of the form7 

expl(ih)-'KEd-Ea)k]Ki(dia). (17) 

Since the collision with ion v can occur randomly in 
time, the average of 

(b\T~i\c)(d\T\a) (18) 

over to tends to zero unless 

(Ec-Eb)-(Ed-Ea) = 0. (19) 

Since this is true for each collision, terms which do not 
satisfy this condition, i.e., terms for which 

(Ec-Eb)-(Ed-Ea) = nha>c, n>0, integer, (20) 

vanish for all time intervals larger than the order of 
2TT/<JOC. Taking 

T(T+8) = T(T)T(8), (21) 

one finds from Eq. (11) that 

fUr+S) = ZLb\T-Kr)\eTc\T-K5)\e-] 

X(eMf)[f\T(8)\dTd\T(T)\al. (22) 

In physical terms, Eq. (21) expresses the fact that inter­
actions occurring in the time interval are independent 
of previous interactions. Hence 

fUr+d)-fUr)==Z(b\T-'\cXc\fji\dXd\T\a) 
c,e 

X{(c\T-^\e)(e\^f)(f\T\d)/(c\^\d)-l}. (23) 

Since the total particle angular momentum is not a 
constant of the motion for the case of a charged particle 
in a strong external magnetic field, the analysis must 
now depart from previous spectral line treatments. 
Letting the expression within the brackets equal A e, i.e., 

(c\T-i\e){(e\p\Mc\n\<t))(f\T\<D-l, (24) 

and assuming that the difference between states b and c 
has a negligible effect on A e, we will show later that for 
short times 8, 

A = ZeAe=y8y (25) 

where 7 is a constant. Therefore we obtain 

LdfUr)/dr28=yfUr), (26) 
7 C. J. Tsao and B. Curnutte, J. Quant. Spectry. & Radiative 

Transfer 2, 41 (1961). 

for which 
/& , a(r)=/3exp(7T), (27) 

with the value of the constant fi gotten from the condi­
tion that 

/6..(0) = (J | /* |a) , (28) 

so that 

A.a(r) = ( J |Mk)exp(7r ) . (29a) 

Alternately in terms of a cross section <r, we have 

fb.a(T) = (b\n\a) exp(-Nvzar), (29b) 

where a is defined by 

c r = - 7 ( ^ , ) - i (30) 

with vz the particle velocity parallel to the magnetic 
field, and N the fixed scatterer density. 

The problem of calculating the spontaneous emission 
probability [cf. Eqs. (9), (11), (29)] is therefore re­
duced to the calculation of 7 or a. I t should be noted 
that the operator T(8) involves the effect of interactions 
from randomly distributed ions on an electron wave 
function whose guiding center location is determined in 
space with respect to an arbitrary origin. The average 
of this effect is taken to be the same as the average 
gotten from randomly distributed electrons which inter­
act with ions located at the origin of an arbitrary refer­
ence frame in space. 

3. SPECIALIZATION OF THE CALCULATION TO 
THE CASE OF ELECTRONS IN A STRONG 

MAGNETIC FIELD 

Until now the transition probabilities were defined 
per single final quantum state. For our applications 
however, the transition probability per final state must 
be multiplied by the number of final quantum states 
consistent with the energy uncertainty of the initial 
state. 

The electron eigenstates are characterized by a 
quantized energy Eb perpendicular to the magnetic 
field and a continuous energy Ez parallel to the magnetic 
field. In addition there is a quantum number s which 
accounts for the randomness of location of the electron 
guiding centers with respect to a fixed ion at the co­
ordinate origin.8 

Starting with a single quantum state with energy 
uncertainty dEz at energy Ez=pz

2/(2m), we have 

dpz*dEz/pz. 

Since the number of quantum states per unit volume 
is proportional to dpZy a single quantum state at Ez 

with an energy uncertainty dEz corresponds to {pz/pJ) 
quantum states at Ez

r=pz>
2/2m with the same energy 

uncertainty. Hence in Eq. (23) the transition proba­
bility involving states e and c ox f and d must be 

8 See Appendix A. 
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weighted by a state density factor of 

(vc/ve)~(vd/vf), (31) 

where vm is the velocity component of state m parallel 
to the magnetic field. 

Letting ee designate the energy of state e perpendicu­
lar to the magnetic field, we have 

ee= ec+mhcoc, m integer. (32) 
Designating 

Tm,c>s= [c,sI r-KS) | ej_f\ T(8) \ djvc/ve), (33) 

where s is a degenerate quantum number used to locate 
the electron guiding center8 and 

»m=(e\n\f)/(c\vi\d), (34) 

we may write the quantity A defined by Eq. (25) as 

A=E(Tm,c^m~l)P(s), (35) 
m,s 

where P(s) is the probability for the electron to be in 
a state characterized by s with respect to a given ion. 

Expanding fxm, i.e., 

iUm= l+(dfjim/dm) | m==0m+ (2)~1(d2iJLm/dm2) \ m=0m
2, (36) 

one has for Eq. (35) 

m=ni2 

A= Z Z(Tm,c.s-l)P(s) 
m—mi s 

I E E Tm>c>s mP(s) 

™>=m% 1 d2fJLm 

~T~ 2-J 2—i •*• m,c,s 

m=mi s 2 dm2 
tn2P(s). (31) 

The running index m may have positive or negative 
values; cf. Eq. (32). Positive values of m correspond to 
a scattering process in which the energy perpendicular 
to the magnetic field is increased; negative values to 
the opposite situation. It will be shown later that the 
upper and lower limits, m\ and m^ are determined by 
the effective maximum scattering angle, w/2, for the 
Born approximation to coulomb scattering. 

The second sum in Eq. (37) may be simplified to read 

mi OT 

E E —m,c,s 
m=0 s dfJi 

OfJim 

m=o dm 
2m2P(s) m 

mation we must use a more exact, purely quantum 
mechanical expression. In the following section the 
semiclassical and quantum-mechanical approaches to 
scattering problem will be obtained and compared. 

4. COMPARISON OF SEMICLASSICAL AND 
QUANTUM TREATMENTS 

In the semiclassical approximation we view each elec­
tron as a macroatom, quantized perpendicular to the 
magnetic field and representable by a probability density 
of the form 8(z—vi) parallel to the magnetic field, where 
z and v are, respectively, the position and velocity 
parallel to the field and t is the time. Then one may 
calculate the transition probability between two atomic 
states with the same velocity along the field but with 
quantum states (n,s) and [V, s+(nf—n)~}. 

For a single ion-electron encounter the probability 
amplitude becomes9 to first order10 

s>(s>n) 
= (2e2/ihv)Kn,_n\:qsU2lIn,-nZqnV2l, (39a) 

, '=(2^/*ft^»'-n[ff»1/2]/»'-»[^1/2]. (39b) 

The symbol q is defined by 

q= (Eb/Ez)V
2(n'-n)/n112 with Eb=nhuc, n<ri. (40) 

The transition probability in terms of Cn,k,s->nf,k',s' is 
simply \Cn,k,s->n\k>,S'\

2. 
In the pure quantum treatment, on the other hand, we 

consider the wave function for a beam of electrons with 
quantum numbers (n,k,s) and calculate the transition 
probability to a beam with quantum numbers (n',k',sf) 
where 

h2k2/(2m)+nha>c==h2k/2/(2m)+n'ha)c. (41) 

Equation (41) states the conservation of energy. We 
note that energy changes parallel to the magnetic field 
are now taken into account. 

From Fermi's second golden rule11 we have for w, 
the transition probability per unit time for a beam of 
particles with unit density 

w = (2ir/h) | « & ' / 1 e2(r2+z2)-V2 \ n,k,s) \ Hn/dE, (42) 

where dn is the state number per energy interval dE, 
Taking a volume with unit length in the direction 
parallel to the magnetic field, we have for the number 
of modes necessary for completeness 

if mi = m2% The condition on the limits of m will be 
verified later. The differential 3/dm operating on Tm,c>s 

does not act on the order of the function TmtC,s. 
For the first and third sums it is sufficient to use the 

value of Tm,c,s obtained from the semiclassical straight-
line approximation, since in these cases there are no 
terms with opposite sign involving the same initial state 
but different final states. However, for the second sum-

2Trn—k, ?z integer. (43) 

9 R. Goldman and L. Oster, Aeronautical Res. Labs, of the 
Office of Aerospace Res., U. S. Air Force, Wright-Patterson AFB, 
Ohio, 1963 (to be published). 

10 L. M. Tannenwald, Phys. Rev. 113, 1396 (1959), has carried 
out a similar calculation in the limit s — n. His Eq. (17) agrees 
with out results except for a factor of two which is hardly of any 
importance. 

1 1E. Fermi, Nuclear Physics (University of Chicago Press, 
Chicago, 1950), p. 142. 
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Since k=(p/h), it follows immediately that 

dn-=dp/2irh. (44) 

vf=hk//m, Vi—fik/m, (45) 

we obtain for the transition probability (w/vi) per 
incident particle 

Defining 

w/vi— \a(n, k, s, n'—n) \ 2/(viVf), (46) 
where 

a(n, k, s, nf-n) = (n,
Jk

//\e2/(h(r2+z2)1/2\n,kJs). (47) 

Here r and z are radial and axial coordinates of the 
cylindrical reference frame centered at the ion location, 
with the z axis parallel to the magnetic field. 

Equation (46) is the same as 

wM= (2e2lh)2Kn>„n
2lqs^In>-n^^ , 

s>n, (48a) 

= (2eV*)2^»^2C?»1/23^n^^1/2>r1»r1, 
s<n, (48b) 

where I and K are the usual Bessel functions. The value 
Eb is that used in Eq. (40); E*«(w/4)(i>t-

2+z>/2). Since 
Eq. (48) is virtually identical12 with the semiclassical 
expression resulting from Eq. (39), the use of the semi-
classical approximation in computing the first and third 
sums in Eq. (37) is justified. 

5. EVALUATION OF THE CROSS SECTION: 
GENERAL FORM 

We are now ready to evaluate the three summations 
given in Eq. (37). 

I t can be shown for the semiclassical case that the 
contribution to the first summation from a single collision 
in the time 3, in the limit of elastic scattering, becomes 
to high accuracy 

The contributions from sVc,c/(ih) and sr)c>c'sy\cJ 
[_2{ifi)2~] are the adiabatic terms calculated in paper I. 
This is obvious since m = 0 is the adiabatic condition 
of no change in the spatial part of the wave function 
represented by the quantum numbers n, k, and s. 
Hence the terms 

(2)-1 (S3) 

come from nonadiabatic scattering. 
After much algebra, expression (53) becomes13 

-Nivb2wh{muc)-\2e2/hv)22(4:n)-1 

m 2 / E$\ 
X E (2)-Hl+—)(n'-n)2{In^n

2Kn^lKn,„n^ 
n'-w=l \ EJ 

/Cn'_n/w/_n_iin/__n_|_i}. (54) 

For the second summation of Eq. (37) one has14 

£ (nf-n)h(2Eb)~4 (n'-n)(I,K)n,,n 
nr—n—l I 

+nvn-
diVrT1) 

dEb 

2(nf—n)fiac(I,K)n'>n 

-\-n-
d(I,K)n,,n 

dEb 

(nf—n)ho)c 

jEJ=constant 

where 
d(vn

 l)/dEb | 2?:=constant= (2vnEz)~ 

(55) 

(56) 

z^svccW-svcjw-'-ims) (49) 

regardless of the size of a(n, k, s, nf—n)/(y) with respect 
to unity.8 The plus sign is for Ef—Ee of Eq. (34) greater 
than zero; the minus sign is for the same expression less 
than zero. Using m as defined in Eq. (32) we have 

syc,c+m=v~1{a(n= (ec+ftuc)/fi>Uc, k, s, m) 

—a(n— 1, k, s, m)}. (50) 

In the limit of w^>l, this may be approximated as 

sVce=(v)-Kdcx/dn). (51) 
Finally, 

For the third summation we have, again with the aid 
of Eq. (46), after performing the integration over the 
parameter s 

-NiVnbi )(_)(2n)"1 

X E (n'-ny(I,K)n'A2)-1. (57) 

For all three summations there results, with the ex­
clusion of adiabatic terms, 

/2wh\/2e2\2 

\mo)c/\hvn/ 

2\ 2 

-NiVji —)(— j ( 2 » ) - i 

E (2)-1( 

(l+~\n'-nni,K)n 

1 + — (» ' -»)*( / ,£)» ' .» 
E, 

m—mi 
(52) 

-Eh{n'-nf-
d(I,K)n',n 

dEb inconstant 

12 The difference in the results is traceable to the assumption of 
a constant velocity along the magnetic field in the semiclassical 
picture as opposed to the explicit introduction of Vi and v/ in the 
quantum approach. 

+W-n)V,K)n-,n\ (58) 

13 See Appendix B. 
14 See Appendix C. 
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or 

/2ir*\ /2e2\2 m2 f Eb 
-NivJ W _ ) ( 2 w ) - i £ _(2)-i—(/,Z)n , ,n 

\m0)c/ \nVn/ n'-n=l { Ez 

Ul^b i inconstant ' 

The adiabatic terms add contributions1 

±N{i~
1(4:<ir/3)(ec/H)5 (60) 

and 

Nivn(2wh/mo)c)(2e2/hvny(2n)-1(4)-1. (61) 

The two terms correspond to 

r dA 
± i / sVc,c—ds for Ef~Ee=±:ho)c (62) 

J s=o ds 

and 

r dA 
— I sVc,c'sVc,c2~1—ds, (63) 

J s=o ds 

respectively, in Eq. (49), with P(s)^=(dA/ds). 
The contributions (60) and (62) correspond to the 

line shift calculated in Paper I. These contributions will 
be neglected in the following because it can be shown 
by detailed calculations that the numerical amount 
depends crucially on the manner of cutting off the wave 
functions at the maximum impact parameter, but that 
in general the resulting shift will be insignificant. 

6. EVALUATION OF THE CROSS SECTION: 
STRONG COLLISION CUTOFF 

In Eq. (37) finite limits mi and m^ were introduced 
for the summation. The large values of m correspond to 
collisions for which the energy transfer between the 
directions perpendicular and parallel to the magnetic 
field is large compared to the cyclotron photon energy. 
Since our whole treatment is based on the Born approxi­
mation which is not valid for very strong collisions, a 
finite cutoff on the summation must be introduced. It 
will be shown that the contribution to the cross section 
from very strong collisions is identical to the ordinary 
Coulomb contribution without magnetic field in the 
straight-line approximation. This fact permits us to 
use the customary strong collision cutoff at the ninety 
degree deflection angle. 

We investigate the summation in Eq. (59) by expand­
ing In>-rX%) and15 Kn'-n(oo) for (nf~n)^>l. Writing 

n'—n=p, qn1,2 = x, (64) 

15 A. Erd&yi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
Higher Transcendental Functions (McGraw-Hill Book Company, 
Inc., New York, 1953), Vol. 2. p. 86. 

G O L D M A N 

we have 

Ip(x) = 2U2(2ir)-1(p2+x2)-1<* 

Xzxpt(p2+x2)V2-p sinh-1^/*)] 

m = l 

X [ Z (-2)mamr(w+|)(/>2+x2)-»'2+0(x-»)] (65) 

and 

Kp(x) = 2~U2(p2+x2y^ 

Xexpt-~(p2+x2)V2+p sinh-K^A)] 

m—l 

X [ E (2)mamT(m+$(p*+x*)-'»iz+0(x-M)l, (66) 

with 
0 0 = 1 , (67) 

ai= - ( l /8 )+(5 /24) [ l+ (xV^) ] - i , (68) 
and 

a2=(3/128)-(77/576Xl+x2/p2)-1 

+ (3S5/3456)(l+x2/p2)~2. (69) 

To highest order in powers of p~l, one obtains for 

\13J\- )n+p,n 

Ip
2(x)Kp-1(x)Kp+1(x)--Kp

2(x)Ip-.1(x)Ip+1(x) 

= [ 2 | ^ | 3 ( l + ^ 2 ) 3 / 2 ] - 1 . (70) 

If the total change in Ez as the result of a collision, 
AEZ, is very much less than EZJ the contribution in 
terms of n'—n can be expressed in terms of Adz, where 
ez-=cos~l(Eh/Ez)

+l12. When in addition, AEZ is very 
much greater than ha)c, the asymptotic form (70) can 
be used instead of the complete expressions (65) and (66). 

Assuming ordinary Coulomb scattering and defining 
A0 as the scattering angle away from the initial velocity 
of the particle, we have that the contribution to the 
scattering cross section in a region between Ad and 
AO^d(Ad) is proportional to (Ad^diAd). The same 
contribution expressed in terms of Adz varies as 
(A0z)~

ld(A6z). However, the functional dependence of 
the contribution on AS and A6Z is the same as that 
obtained from the asymptotic form of (7,iT)n+p,n, 
Eq. (70). Hence the summation over (I,K)n+Ptn9 which 
in the limit of large values oln'—n may be replaced by 
an integration, can be converted into an integration 
over A6 with ir/2 as the upper limit. 

This result is in agreement with the expectation that 
for very strong deflections the magnetic field should 
induce a negligible alteration on the behavior of the 
cross section. In the remainder of this section the con­
clusions summarized above will be verified and stated 
in a mathematically useful form. 

Neglecting radiation, we derive a relationship be­
tween n'—n and A6z from the conservation of the total 
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electron energy during an electron-ion collision. Hence 
the electron kinetic energy is the same before and after 
a collision and 

or 
(n—nf)ho)c^mvzAvz, 

Using the relationships 

vz=vco$6z, Vb=vsin$z 

we obtain 
Avz= — v sindzA6z= —vbA6z 

(71) 

(72) 

(73) 

(74) 

Then with vb= (2Eb/m)112 we finally have 

A0Z= {n'-n)h^c/{2Ez^Eb^
2). (75) 

After one converts the summation over nf—ft to a 
summation over Adz, it is obvious that the contribution 
to Eq. (59) from events between Adz and A6z+d(A6z) 
is proportional to d(A0z)/A6z for E£2>fuac. 

The next step consists in verifying the relationship 
between Adz and A0. We note that on the z axis 6Z=0; 
on the other hand, 6=0 is given by the direction of the 
initial electron velocity. We now consider a sphere in 
velocity space of radius v each point of which represents 
a possible electron velocity before or after the ion-
electron collision. Next take the great circle through 
the points corresponding to the initial electron velocity 
and the intersection of the dz=0 axis with the sphere. 
An angle can be defined between the planes of this 
great circle and the great circle obtained by joining the 
initial and final electron velocity points. Details are 
shown in Fig. 1. 

We wish to express the coulomb contributions, pro­
portional to d{A8)/AQ, in terms of the alternate variables 
d(A0z) and ABZ. Consider the ring on the sphere such 
that A8<A$i<A6+d(Ad). Since the contribution per 
unit length of the ring at angle a is independent of the 
value of «, the total contribution from the range of 
points i such that 

and 

is 

A6Z< (A6Z)4< A$z+dAdz (76) 

Ad<A6i<Ae+dAe (77) 

4d(Adz)d(A6)l27r(A6y sina]"1. (78) 

Here d(A6)/A6 is the contribution from the complete 
ring and 4d(Adz)/$ma is the total length of ring inter­
cepted between Adz and A0z+d(A6g). Writing 

A0,= A0cosa (79) 

we have for points such that Adz is constant 

d(A6)/A6=tmada (80) 

and the contribution (78) becomes 

U{A6z)da{2TrAdz)~\ (81) 

FIG. 1. The change in 
electron velocity due to a 
single elastic collision. 

Since the range of integration on a is from 0 to x/2, the 
total contribution between Adz and A0z+d(A6z) is 

d(A$z)(Adzy (82). 

It is well known16 that contributions to the collision 
cross section of the form d(A6)/A8 [or of the form 
d{A0z)/A0z~] are obtained for the case of ordinary Cou­
lomb scattering without a magnetic field. We therefore 
expect that the usage of our approximation, Eq. (70), 
whose contributions to the summation vary as 
d(A6z)/A6z, corresponds to the neglect of changes in the 
electron trajectories due to the presence of the magnetic 
field. It has thus been shown that the contribution to 
the cross section from very strong collisions is identical 
in form, for values between A6Z and Adz+d(A8z), to the 
ordinary coulomb contribution without magnetic field 
in the straight-line approximation. 

We are now ready to perform the summation over 
n'—n with the appropriate cutoff corresponding to the 
angle A8=T/2, We note that for the case of large mag­
netic quantum numbers n, there exist quantum numbers 
w* such that t£$>l. The final result is insensitive to the 
numerical value of n* as will be shown presently. Then 
we divide the terms of the summation into two groups 
according as to whether nf—n>n* or n'—n<n*. For 
nr—n<n*, with 7=0.58, Euler's constant, we have 

-=ln(n*)+y. 
-n=i n —n 

For w!—n>_n* we have 

Since 

b rhd(ri—n) 

a J a {n'—n) 

Aez{n'-n)huc/{2EhvmzV
2), 

this may be written as 

/ 
J a 

ahwc(2EzlimzV*)-i (A6Z) 

(83) 

(84) 

(85) 

(86) 

16 L. Spitzer, Physics of Fully Ionized Gases (Interscience 
Publishers, Inc., New York, 1956), p. 72. 

17 L. Oster, Astrophys. J. 137, 332 (1963). 
18 E. Lifshitz, Zh. Eksperim. i Teor. Fiz. 7, 390 (1937). 
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which may in turn be written as 

9,=afe c (2£^/2£ 6 i /2 ) - i ( 2 T A ^ ) 

(87) 

where A is given by 

a0+a1ll+x2/(n^-n)22-1+^ll+^/(nf-~nyj-\ (94) 

#o, a>i, and a2 are numerical constants whose values are 
immaterial for our purposes. Since 

where £ is the length in radians of the arc of radius A6 
lying within the area bounded by the limits of integra­
tion on the sphere of radius v; cf. Fig. 1. 

Taking the cutoff angle for the collisions to Ad~ir/2, 
we have for the summation over terms with nf—n>n* 

/.A0=7r/2 

2 pd(Ad)(2irAd)-1. (88) 
J Adz = (n*ha>c) (2EzV2£6i/2)-i 

Since 

P=2l(w/2)-sirr1(nHccc/2Ez
1^Eb

1^Ad)']y (89) 

the integral becomes 

\n{J2Ez
1i*Ehvy{2n*fiuc)~] 

~2frl\ xcotxdx, (90) 
J x =sin~1 (n*hae/ ( T T £ ^ / 2 £ 6 I / 2 ) 

where x=shr-1Zn*hcae/(2Eb
1I2Es

1'2Ae)J The remaining 
integral can be shown to read (w/2) ln2 in the limit 
n*/n<&l. 

Therefore we finally obtain 

cutoff 

E (» / -« ) - 1 = ln[1r£,1 '2£6
1/V(2^c)]+7, (91) 

n'—n=l 

x=(n'-n)(Eh/Ezyi* (95) 

as before, A is independent of the term number and one 
obtains for the above correction 

£ (nf~nyA{2[x2+{nf~-nyj'2}~1 

n'~n—l 

= 0.6A/(1+Eb/Ezr*. (96) 

The value of the term for n'—n= 1 alone is 

O.SA/{l+Eh/EzyiK (97) 

It is now apparent that the effect of deviations from 
coulomb trajectories is largely accounted for by using 
the first term of the series without any approximation 
and the remaining terms of the series in the coulomb 
approximation. 

By this scheme of approximations the summation 
within Eq. (59) becomes 

- ( 2 ) - / ~ ) { ( / ^ ) » + i , K + 

+2-W / 2£-3 / 2Dnfr£2
1 /W /V2/ko c)+Y-l]} 

d(I,K) 
-Eb 

dEb 

-3EbE^2(4E8^y 

so that 

E {I,K)n,n,{nf-n)2=EV2{2E*'2)-i 
n'—n—X 

X[ln(x£^W / 2 /2 fcc )+Y] . (92) 

7. EVALUATION OF THE CROSS SECTION: 
WEAK COLLISION CONTRIBUTIONS 

The evaluation of the summation in the preceding 
section was based on approximation (70) for the Bessel 
functions' which in effect neglected the magnetic field 
influence on the particle trajectories/This procedure is 
permissible for* the larger values of nf—n. The first few 
terms however^should be calculated more accurately. 

For that purpose we include one more term in the 
expansion for the Bessel functions and obtain 

£ (n'-n)2(I,K)n,,n 

mi 

= E (w'-#)2{2[*2+(»'-w)2]3 '2}-1 

n'—n—l 

X{l+A\jt?+(n'--n)*T-1+-"}, (93) 

X[}n(TE^2Eb^/2h^c)+y~l^. (98) 

In order to bring Eq. (98) into a more tractable form 
we consider the two limiting cases of particle motion 
predominantly perpendicular to or along the magnetic 
field lines. 

Firstly, if f=(Eb/Ez)
1/2<<:l, we have8 

2-1E^1/2E-3/2[ln(7rE6
1/2^1/2/2^c)+7]. (99) 

On the other hand, if f=(Eb/Egy'2?>l, Eq. (98) 
simplifies to 

2-1E&E,1/2£-3/2[ln(7rE6/4fec)+1.5]+i. (100) 

For completeness, the quantity Q, defined by 

Q=-EV2Ez-V
2(I,K)n+i,n 

- 2EV2Ez~
1/2td(I,K)n+1>n/dEbl, (100a) 

is illustrated in Fig. 2. This quantity, multiplied by the 
factor 2~1EbEz

1/2E~312, is added to the term 

2-1^6^1 /2£-3 /2[ ln(T^1 /2^6
1 /2 /2^ c)+7-l] 

of Eq. (98) in the determination of the nonadiabatic 
contribution to the cross section. 
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8. PHYSICAL INTERPRETATION 

The dimensionless quantities (99) and (100) which 
contain the significant portion of the cross section de­
pend on the longitudinal and transverse energies in a 
manner which is not obvious at first glance. In order to 
gain a better understanding of the physical nature of 
this dependence we discuss in the following the behavior 
of the related quantity (A0*)2 averaged over collisions. 
This value, ((A0s)2)av, will be used to infer maximum 
impact parameters for nonadiabatic scattering which 
can be independently verified from a simple classical 
picture. 

For ((A0z)
2)av in time 5 we have 

<(A0,)2)av 

= E E P(s)Tm,c,smKfac/2Eb»>EU>y. (101) 

Using (37) and (57) one obtains 

(5)TM2 

N^nS2irh(mo>c)-
1(2e'2/hvny(2n)-18Eb

,i 

E E P(s)T, 
s m—mi 

(102) X E Ari-n)n-\I,K)n,n,. 
n'—n=l 

Hence 

(A^)av
2 = ^^52T^(ma)c)-

1(2^2/fen)2(2^)-18E6
2 

X(hae/2Ehv*E.u*y2r1 E (» ' -» )W%.» ' - (103) 

Using (91) and (92), this is equal to 

iV^n527r(wcoc)-
1(2^2/^^)22E&

2(fcc/2E&
1/2E,1/2)2 

X^-1{2-1^^2E-3/2[ln(7r£,1/2£6
1/2/2^coc)+7-l] 

+ ( / ,#)n + 1 ,4 . (104) 

If we neglect insignificant numerical factors, the curly 
bracket becomes in the case of (Eb/Ez)

lf2^l, using (100), 

constX {2-WIE- 3 ' 2 lnfrE,1 'W'V2*«c)} . (105) 

On the other hand, for the case of (Eb/Ez)
ll2<Kl, we have 

constX {l^E^Er*2 ln(wEz/2huc)}. (106) 

If the scattering were of a pure Coulomb nature, 
(A0s)av

2 would be proportional to ln[7r/(2A0min)], where 
(A0min) is a minimum scattering angle. 

The values of (A0)min implied by this term are 

(Ad)mbl=h<*e/Ehv*E,v*, (Eh/E,yt*»l, (107a) 

( A 0 ) m l a = K / £ „ ( £ 6 W 2 « l . (107b) 

For the case of pure Coulomb scattering with the elec­
tron in a field of frequency coc the value of (A0)min is 

(Eb/E2)2 

FIG. 2. Dependence of the quantity Q on the value (Eb/Ee)
112. 

Since in the case (Eb/Ez)
1I2<£l the particle motion is 

virtually a straight line, the values of (A0)min from Eqs. 
(107b) and (108) should agree closely. This can be 
verified upon inspection. 

For (Eb/Ee)
1/2^>1, the value of (A0)min is larger by a 

factor of (Eb/Ez)
1/2 than the value in the pure coulomb 

case. To express (107a) in terms of an equivalent classi­
cal minimum scattering angle we assume 

zezv~ (109) 

where v is the total particle velocity which is approxi­
mately equal to vb for this case. Equation (109) is well 
justified in the pure coulomb case.17 

(AO)min=ze*/Zri(E,/Eb)v*E]. (HO) 

(A0)m i n=fec/(£6+£2). (108) 

Equation (110) implies a maximum impact parameter 
of ri(Ez/Eb)

112 to be used in the evaluation of contribu­
tions to the value of ((A0^)2), where ri is the electron 
Larmor radius. 

This implication may be substantiated by calculating 
the increment in the electron velocity parallel to the 
magnetic field due to an ion-electron collision. We take 
for the electron coordinates 

r= [fi cos(a>c/+a), rx sin(a>c/+a) , vzt], 

and for the ion coordinates R= (#,0,0). Then, as a first 
approximation, the force on the electron parallel to the 
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(117) 

Therefore the contribution to the scattering angle is 
exponentially damped for (Eb/Ez)

1,2^>l, if the ion is at 
a distance of the order of r% from the electron's guiding 
center. This result is consistent with a shielding distance, 
fmax, of order ri(Ez/Eb)

1/2, for which, for an ion at a 
distance of the order of n from the electron, there 
would be no significant scattering effect for (Eb/Ez)

112 

greater than unity. 
I t should be noted that for the case of (Eb/Ez)

1/2<Kl, 
too, one can obtain using Eq. (109) a value 

r^^niEjEtfi* (118) 

which agrees with the value of rmax resulting from an 
expression analogous to Eq. (112). 

Since we found that the scattering result in the classi­
cal picture is consistent with the classical extension of 
the quantum results, we can be confident that Eqs. (99) 
and (100) are derived on the correct physical grounds. 

19 A. Gray, B. G. Matthews, and T. M. MacRobert, Bessel 
Functions (Macmillan and Company, Ltd., London, 1922), p. 52. 

G O L D M A N 

SUMMARY OF RESULTS 

For the real part of the expression y in Eq. (25) 
we have: 

(1) For the case of strong magnetic field, 7j=Larmor 
radius 

(a) in general 

R e 7 = - Va = — 2>K^2nieAnr112 

X l{2E^2)-\HirEz
l'2Eh

ll2/2h^c) 

+0A2-EU2Ez-V
2(I,K)n+1>n 

-2E^Ez-^
2(d/dEb)(I,K)n+1,n) 

+ (4EbE.u*)-il; (121) 

(b) for (Eb/Ezy
2«l, 

-va= -2V2nie*nr1i2{(2EV2)-1 

XLHirEb/4hc,c)+L5']+(2EbE^2)~1}; (122) 

(c) for ( E 6 / E , ) 1 / 2 » l , 

~va= -2w^nie*mr1/2{(2EU2)-1 

X[ln(7rE&
1 /2E,1 /2 /4^ c)+1.27]+(4E6E,1 /2)-1}. (123) 

20 See Appendix D. 

magnetic field is18 

-e2(vzt)k[_x2+ri2-2xn cos(uct+a) + M 2 ] - 3 ' 2 . ( I l l ) 

The fractional change in velocity parallel to the mag­
netic field which determines the magnitude of A0Z is 

vz
 1 J { — e2vztm

 l\jx2-\-ri2 

-2xn cos(uct+a)+(vzt)
2J-V2dt}. (112) 

Expanding in increasing powers of cos (cocH-a) > we find 
that the first nonvanishing term is of the form 

-3e2xn / t(smuct)(sma)dt[?n(x2+ri2+ (^2/)2]~5/2 

J — 00 

= -3e2nrlxn sina(d/duc)[2uc
2vz-W

2T(5/2)y-1 

xC^+rrt-^KcocAO^+fi2)172], (H3) 

where we have used19 

/ cosxdx(x2+z2)~in+^ 

= K2{z)[T{$/2)-yW2(2z)-2 (114) 
and 

(d/dcoc)(coscoc/)=— /sincoc/. (115) 

Letting x=rjri, where r] is of the order of unity, one 
determines that the term (113) is equal to 

— Ze2m~ly] sino:(d/dcoc) 

X[coA- 8 3- 1 ( l + > ? 2 ) - 1 ^ 2 M ^ - 1 ( l + >72)1/2]. (H6) 

For ricx)c^>vZ} we have 

9. LIMIT OF LOW MAGNETIC FIELD 

In the case of weak magnetic field, i.e., for cases where 
the small angle scattering is limited by Debye shielding 
rather than by quantization in the magnetic field, it 
can be demonstrated that the half-width of the line 
which is proportional to the series expression (98) goes 
into the form derived in the absence of a magnetic field. 
In addition, it will be shown later20 that under these 
conditions the scattering probabilities with and without 
magnetic eigenfunctions become identical. For the dis­
cussion of the half-width we note from Eq. (86) that 
the summation for states for which nr—n5>l can be 
made to correspond to an integration over the scattering 
angle AS for Coulomb scattering. Then the summation 

E (n'-n)"1 

n'—n 

is given by 
ln[(7r/2)(A0)min], 

where (A0)min is the value of AB corresponding to an 
impact parameter at the shielding distance for the 
plasma. For a maximum impact parameter b, with E 
the particle energy, 

(A6)min=e2(2bE)-1
J ze2(fiv)-l>l, (119a) 

(Ae)min=hlb(2mEy/2']-1, ze2(hv)<l. (119b) 

The corresponding value for the series expression is then 

2-^EbE^2E-"2 ln[(7r/2)(A0)rain]. (120) 

This is the expected result. 
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(2) For the case of weak magnetic field, n = L a r m o r 
radius (b) 

-va=-2w^/2nie4??rlf2 

X{(2EV*)-i ln[(7r /2)(A0)m i n ]} . (124) 

Note tha t in this case there is no adiabatic scattering 
contribution. 

For fb,a as denned in Eq . (11) we obtain 

fbta=exp(-Var+iAb,ar)(b\ii\a). (125) 

Now [cf. Eq . (9)] 

J(a>) ̂ 2 constXw4 Re £ pa,a \ (a | /x | b) |2 

a,a 

= 2 constXco4 £ pa,a | (a | n | b) |2 

a,a 

XKD^+^-co)2]-1 

+ ^a^a2+(c0c+C0)2]-1} , (126) 
where to an accuracy of one pa r t in »2 1 

\(a\iAa\b)\= e\(a\x\b)\ 
= e\{a\y\b)\=2-Kn/yyt\ (127) 

with 

and 

(2) distributions with (£&/£*) 1 /2>>ln(7rE/4fcc) and 
fixed total energy. I n both instances the velocity dis­
tributions change slowly compared to the times neces­
sary for individual particle scattering, so tha t i t is valid 
to neglect t ime variations in the distribution function. 

For the isotropic case a t fixed total energy, we have 

K< 
pit 12 

+.- J 0=0 
smW{va/[pa"+(cc±^2}de. (132) 

y=eH/2ch, n=^Eb/tio)c 

Hl\(a\na\h)\2=e2,Ehinuc2 

(128) 

(129) 

Defining f(Eb)Ez
l/2) as the probability of occupation of 

a quan tum state with components Eh and Ez
112, we have 

Pata=mf(EhEz^)dEbdEz^ 

x f f f f(EhE^2)dEbdE^2l , (130) 

and finally 

J («) = 2 constXco%2(m>c
2)-%* J f Ebf(EhE^2) 

X{F a [^ 2 +(a J c -co) 2 ] - 1 +^[^ 2 +(a 5 c +co) 2 ] - 1 } 

Here 0=0 coincides with the magnetic field direction, 
and 

(Ez/Eyt*=cos0, (Eb/E)U*= sin0. (133) 

If pa were independent of 0, the profile would be a simple 
Lorentzian shape. T o obtain a measure of the deviation 
from Lorentzian, we take the angular-dependent pa r t 
of the cross section to be the entire cross section when 
it is greater than the angular-independent par t , and the 
angular-independent par t to be the entire cross section 
when i t is greater than the angular-dependent par t . 

Then using the results of Eqs. (122) and (123), and 
approximating the numerical factors 1.5 and 1.27 each 
by 1.4, we have on neglecting logarithmic contributions 
in the anisotropy: 

pa= 27r^mie
4m~1i2 {lE^^E^E^Er1^ 

0<E 6 /E<Cln(7 r J E/4fc ; c )+1 .4 ] - 1 , (134a) 

va= 2T^mieHn-ll2(2E^)~1lln(TE/4^c)+1.4]; 
[ln(7r£/4fcc)+1.4]-1<E6/E, 
[ln(7rE/4fec)+1.4]-1<2E,1/2E-1^2, (134b) 

^=27rV2^%-1/2(2E3/2)-1E3/22-1£&-1E,-1/2; 

0<2£:2
1/2E~1/2<[ln(7rE/4fec)+1.4]-1, (134c) 

where the term (134b) is obtained by taking the parts 
common to the two extreme anisotropic cases. 

After approximating 

sin0= COS[(TT/2) - 0] « 0, 0^1 > 

and using Eqs. (134a, b, c), we obtain from Eq. (132) 

XdEbdE^2 /ff 
/(«)« 

f{Eb,E2W)dEyAEU>. (131) -coc)
2L \ 4 W J c) 

2a2 

11. DETERMINATION OF LINE PROFILES 

Using the results of the preceding section, it is in­
teresting to obtain the emission profiles for several 
particle distributions. Since our results differ from earlier 
results most markedly in the angular dependence of the 
cross sections, one can obtain a picture of this effect by 
taking the two limiting cases of 

(1) distributions with fixed total energy but isotropic 
in velocity space; 

21 Cf. Paper I, Sec. 2. 

•tan" { 
Dn(TE/4«ft>0)+1.4j 

"] 

Here 

(co—&)c)
3 L 2a/(w—wc) 

2a[ln(7r£/4/toc)+1.4] 

{2oOn(7r£/4feo<;)+1.4]} 2 + (o>- wc)
2 

X {1 - 2-1[ln(7r£/4foo(!)+1.4]-1} 

+a2-1(w-coc)-2 lnfl+tco-coc)2**-^-1 

X IHTE/MCOC)+1.4]~2}. (135) 

a = 2irV2Wie%-1/2(2£3/2)-12-1. 
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Relative to the Lorentzian 2va[_(2va)
2-\-(u—coc)2]-1, 

where va—2a[\n(irE/^hQ)c)JrlA~], the intensity at 
co-~coc=0 is decreased by a fraction 

{4[ln(7r£/4fe c)+1.4]}-1 , (136) 

while the "wings", for which 

( « - w c ) » 2 a | > ( i r £ / 4 « « 0 ) + 1 . 4 ] , 

are increased by a factor of 

ln((o;-coc){2a[ln(7rE/4^c) + 1 .4]}- 1 ) - l 
. (137) 

2[ln(7rE/4fe c)+1.4] 

Since the line intensity at the Lorentzian half-width of 
{2.a[\n(irE/4:ha)c)+lA']} is approximately 

0.5{l+0.1[ln(7rE/4foc)+1.4]-1} 

compared to a center value of unity, we see that the 
linewidth is slightly increased by the presence of the 
anisotropy. 

A more refined treatment involving division of the 
angular part of va into a constant part and another 
variable part always positive in sign, would have negligi­
ble effect on the correction in the wings, but it would 
cause an additional decrease in the center intensity and 
increase in the linewidth of the order of one part in 
[ln(v£/4*G>c)+1.4]. 

Finally, for the distribution with (Eb/Ez)
ll2^> 

ln(7rE/4ho)c), provided in addition that (co—coc)<<C 
a>c(E2/Eb)1/2, the scattering produces no change in the 
particle distribution, and the emission with the use of 
Eq. (147), may be taken as 

+,-

X{laEVy{EhEV*)J+{o>±o)c¥}-\ (138) 

For the line center one then has 

I(u=±Uc)*Eh*E,1'*9 (139a) 

while for the line wings there results 

/(«) cc z £r1/2(«±«o)-2. (139b) 
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APPENDIX A. PHYSICAL MEANING OF 
THE QUANTUM NUMBER 

In cylindrical coordinates, the Lagrangian L for a 
particle in a magnetic field22 in the classical, nonrela-

22 A. Sokolov, Nuovo Cimento Suppl. 3, 743 (1956). 

G O L D M A N 

tivistic case is 

L^2~1m(r2+r24>2+z2)~-eHr2<j>(2Cyi. (Al) 

For the generalized angular momentum p^ we may write 

p<t>= dL/d^=mr2(^>-o)c/2). (A2) 

Imposing the quantum condition on p<p leads to 

p*=hl. (A3) 

Combining both expressions for p<f> we obtain 

hl+mr2o)c/2=mr2^. (A4) 

Similarly, equating the classical and quantum expres­
sions for the energy perpendicular to the magnetic 
field yields 

»J4coc= (tn/2)(r2+r2cj>2). (A5) 

Let #o be the distance of the particle's guiding center 
from the coordinate origin in the plane perpendicular 
to the magnetic field, and r\ denote the Larmor radius. 
Then 

r = 0 for r=b0dzn, b0>rh 
(Ao; 

r = 0 for r=ri±b0, ri>b0. 

On squaring Eq. (A4) one obtains an equation for each 
value of r for which r = 0 . Then substracting one of the 
resulting equations from the other we have 

(wcoc2-1)2(4r^o)(2^o2+/'z2)+^majc(4^o) 

= m2(2nho)c)(4nb0m--1). (A7) 

Since s=n—l, this simplifies to 

wb0
2=27rhs(mo)c)~K (A8) 

APPENDIX B. EVALUATION OF EXPRESSION (53) 

To evaluate expression (53) we assume a random 
distribution of stationary ions with density iV» per cc, 
and take AA s as the geometric area corresponding to an 
electron having collision variable s in the plane perpen­
dicular to the magnetic field, relative to an ion fixed at 
the coordinate origin. The probability that the electron 
be in state s with respect to an ion in the time interval 
is NivdAAS) while the contribution to the first summa­
tion for a single collision with an electron in state s is 

™>2 da 
£ [>-i—(n}k>Sym)J, (Bl) 

w==i On 

The value of the summation (53) for time 5 is then 
approximately 

2̂ r da I 2 

E Nio £ —(n,k,s,ni) v~2AAs8. (B2) 
™=i AsLdn J 

Converting the summation over AA8 to an integral we 
have 

mi r dArda ~12 

NiVd E / — — (n}k,s}tn) . (B3) 
n'-n=l J V2 Ldtl J 
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Since the distance bQ between the projection of the 
guiding center of the electron orbit on the plane perpen­
dicular to the magnetic field and the ion is related to s 
by the equation8 

we have 
irh2=2whs(mo)c)~

1, (B4a) 

2TTM6O=2T% (mo)c)-
lds. (B4b) 

The area which may be occupied by an electron guiding 
center located between b0 and bo+dbo of an ion is 
2whds/(m<j)c). Therefore we have for expression (B3) 

/

2whds m2 rda ~]2 

£ —(n^m) , (B5) 
niOOc V2 n'-n^l [_dfl J 

or since s may vary from 0 to °o, 

2wh/2e2\2 ™% 
NiV ( — 1 5 £ Kn'-^'Kqn11*) 

fn<jOc\ikV/ n ' - n = l 

to eliminate the derivatives, we obtain for the sum 
in (B8) 

m 

n'—n—l 

X{( ?«1 / 2)2(2)-1C/»'-n
2-/n ' -™-iJ r„'- ,+ i]} 

-\-\{In'-n-r\-In'-n+l)2 

X{(qn^y(2)-llKn^n^Kn^n+1-Kn^-]}. (BIO) 

Furthermore, 

Ia-i{z) -Ia+i(z) = 2a(z)-Ua{z), (B1 la) 

Ka^{z)-Ka+l(z) = -2a{z)^Ka{z). (Bl lb) 

Hence instead of (BIO) we have after some algebra 

™2 1 

£ H 
n'-n=l 41 

•4c{n'-n)2 

~Knr-n
2+4JC< n'—n—l &-n'—n-\-l J 

X[ In'-n2(qSll2)C 
J s=0 V 2n1'2/ 

ds 

+In^'Kqnm) Kn'-Jiqs1'*)! )ds. (B6) 
\2n^2/ 

Now 

hKy)ydy=yK2)-1lh'~h~i^+il 

and 

K^{y)ydy=-y\2)^[K^-K^K^{] 

Then expression (B6) becomes 

a (B7a) 

(B7b) 

\N* 
27r^/2e2\2 2 " 

in* ( — ) — 

(qn1'2)2 

X { ( g ^ 1 / 2 ) 2 ( 2 ) - 1 [ / n ' - n 2 - I n ' - n - l / n ' - n + l ] } 

+iC4(^-^)2(^1/2)-2/w^w
2+4/n,_n_1I^_n+1] 

X{(qn'^2)~^Kn^n
2--Kn^n^Kn^n+12} (B12) 

and, upon replacing g according to Eq. (40), 

m 

z i(»'-»)si:i+(£*/£.)-1] 
n ' - - n = l 

—irw'_n
2/n>__n_iir

w>_n+ij. ( B 13) 

Expression (54) then results directly. 

APPENDIX C. SECOND SUMMATION IN EQ. (37) 

For the second summation in Eq. (37) we note that 
the contribution from the Born approximation to 
Tm,e,s(8) for a single collision in time d is 

f (g#1/2)2 

X £ Kn>-+'2Zqny*l\ [7„,_n*(8»1/2) 
n'~ n—l [ 2 

-/„»_^,(j»1/*)/»._H .1(?»1/*)]|+7.»_*C5»1<*] 

f (qn^Y 
X lKn,_n+1{qnll2)Kn.-n^{qnW) 

-K^Kqn^m . (B8) 

Using the relations 

7a_1(z)+70+1(2) = 27„'(«), (B9a) 

if ( (_1(S)+Za + 1(2) = - 2JT.'(s) (B9b) 

'v,)(c,s\ / U0-
lHr{t)Udt\ej 

Uo-'H^OUodt d). (CI) 

Assuming a random location of ions we have for the 
number of such collisions for a single electron in the time 

NficSAAs. (C2) 

Combining (CI) and (C2), one obtains 

vcr I r 
Tm>CtS(5) = NivMAs—\ c7s / U<rxHv(t) UQdt 

X\f\[ UsrlHv(t)U$dt\d\. (C3) 
I— \J —an 
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Since 

R O B E R T G O L D M A N 

edzha)c, (C4) 

the difference between the contributions for ee= ec+mho)c 

and those for €e~ec~-m%o)c is altered negligibly by 
replacing e for / , and c for d in the second matrix element 
of Eq. (CI). One then has in place of (CI) 

Equation (Dl) holds in the Born approximation, a 
necessary condition for which is hooc<^:AEb<KEb. Asymp­
totically, using the result of Eq. (70) this becomes 

/2e2\2/2irh\ 
u(An)« ( — ) ( )^[2(A^)-3]-1E//2£-3/2 

\hv/ \mo)J 

o 'Vc/Ve)\ C,s\ J 
Taking 

Uf-lE,(t)Udt\e $z
:=cos""1(vjt/v) 

(D2) 

(D3) 

X f Uo-W^Uodtlc . (C5) ] • 

and defining o)(A6z)d(Adz) as the probability for an 
electron to be scattered with angle A62 and A6z+d(A6z), 
we have 

In Sec. (4) this last expression was shown to be the 
semiclassical analog of the quantum mechanical ex­
pression (w/vi) in Eq. (46). Therefore we may write 
in terms of w 

u{A6z)d(A0z) 

= co(An) 

Using 
Ld(AEb) Jl 

•d(AEby 

.d(Adz)~ 
\d{A6z). (D4) 

J- m.c, (C6) 

Here AA8 is, as before, the geometric area corresponding 
to an electron having quantum state 5 with respect to a 
fixed ion origin, Ni is the ion density, and vc(=Vi) is 
the initial electron velocity parallel to the magnetic field. 

For the second summation we therefore have 

/2wh\/2e2\2 m 
NiVndl )( — ) E neEb~^2 

\mo)c/\hvn/ »'-»-»i 

/\\_ln'~n -&-n'~-n—l&nf—-n-b-l &-n'~n J- n'~n—1-* nf—n-\-lJ 

X (2Eb)-
1(nr~n)hcoc(vn/vn>), (C7) 

where ne is the lesser of n and n', and 

AEb = hcocAn = A(mvz
2)/2 = mvzAvz—mv3vbAdz 

as well as 

(D5) 

(D6) d(AEb) = mvzvbd(Adz), 

we obtain as the result from magnetic eigenfunctions 

o)(Adz)d(Adz) = 2Tre24rlEz~
li2ErziU{Adz){Adz)-*. (D7) 

We now compare this result with the case of Coulomb 
scattering into angles A0 and 0 (azimuth). The scatter­
ing probability for a beam with one particle/cm2-sec 
into the solid angle between AB and A6+d(AQ) and $ 
and <£+dty on the sphere of speed v=(2E/m)1J2 in 
velocity space reads 

\/m m \ 
Eb=nehooc, Ez=-( —vn

2-i—Vn'*). 
with 

2 \ 2 
(C8) 

Defining 

\1 ,&.)nf,n—l/n'—n &n'—n—l&nf—w-fl 

and pairing off contributions from dz |n'—n\, we obtain 
the result of Eq. (55). 

APPENDIX D. SIMILARITY OF SCATTERING 
PROBABILITIES WITH AND WITHOUT 

MAGNETIC FUNCTIONS 

Using Eqs. (37) and (57), the probability, «(A»), for 
the incident electron beam of one particle/cm2 sec to be 
scattered from the state with energy Eb=Eb±Anho)c as 
the result of encounters with a single ion is 

W(Ad,<l>)dQ=Q>(Ad)<l>) sin(Ad)d(Ad)d(t>, (D8) 

co(A0,<£) - 4r\e2/2E)2l$m{Ad/2)~\~*. (D9) 

For small A0, 

sinA0«A(9 (D10) 

and the probability becomes 

e*E-*d(A$)d4>(A0)-*. (Dll) 
We define the aximuth angle so that $ = 0 coincides with 
a line of constant latitude in the sphere of speed v in 
velocity space. Then 

co(An)^l -
2e2\2/2wh\ 

hv 
• ) ( )n£ln>-n2(qnll2)Kn>~n+lKn>--n~~l 
/ W c / 

A0=sin#(A0), 
and for constant <j>, 

d(Adz) = sm<t>d(A6). 

Equation (D8) becomes 

e4E~2d(Adz) sin3^#(sin^)-1(A(9z)"
3. 

(D12) 

(D13) 

(D14) 

] . (Dl) 
For the zone on the sphere of speed v in velocity space 
with values of A6Z between A6Z and A0z+d{A6z), <t> 
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varies between — T/2 and r/2. Taking these values as 
limits of integration on <£, we obtain for the scattering 
probability into the zone d(A6z) 

^(A62)d(^z) = (T/2)e^E-2d(Adz)(A6z)-
s. (D15) 

This is the pure coulomb result. 
The scattering probability in the magnetic case 

tacitly assumed one particle/cm2-sec in the direction of 

I. INTRODUCTION 

RECENTLY, nuclear magnetic resonance experi­
ments have been used to measure the spin-

diffusion coefficient D in gaseous hydrogen1,2 between 
20 and 55 °K, and3 in gaseous He3 between 1.7 and 
4.2°K. In these experiments, it is usually assumed that 
D is identical with the self-diffusion coefficient4 Do of 
the gas and that the nuclear spin is merely a label which 
allows the diffusion to be observed. However, it turns 
out that the values5,6 of D0 given by the Chapman-
Enskog theory of transport processes are systematically 
smaller than the experimental values of D, and that 
they lie outside the limits of experimental error. 

The object of this paper is to show that, in fact, 
Do is not the quantity measured in these experiments 
and that an appropriate expression for D reproduces 
the experimental results quite well. The distinction 
between Do and D arises only in those situations in 
which it is necessary to treat the scattering of particles 
quantum mechanically. For a two-component gas at 

* This work was carried out while the author was a summer 
visitor at Brookhaven National Laboratory, Upton, New York. 

t Work done under the auspices of the U. S. Atomic Energy 
Commission. 
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the magnetic field incident on the scatterer. The scatter­
ing probability in the coulomb case assumed one 
particle/cm2-sec in the direction of the velocity incident 
on the scatterer. Since the assumption in the coulomb 
description is the equivalent of Ez

ll2/E112 particles/cm2-
sec in the direction of the magnetic field, the value for 
this situation should be a factor of Ez

1/2/Elf2 lower than 
the magnetic value. 

the temperatures under consideration, the coefficient 
of diffusion of component 1 relative to component 2 is 
given by4 

3 kT 

where T is the temperature, k is Boltzmann's constant, 
n the total number density, and m the mass of the 
particles (assumed to be the same for each component). 
Quantum mechanical effects enter through Qi2(u) 

which is a special case of 

a12<»,» = (___) / dye-yV^Qu^iy), (2) 
\irm/ Jo 

where y2 is the relative kinetic energy of the pair of 
particles divided by kT, and 

7r/ m\112 rT 

<2i2(n) = -( — ) / dxsinx(l—cosnx)ai2(y,x). (3) 
y\kT/ Jo 

0:12(7,̂ ) is proportional to the differential cross section 
for scattering of a particle from component 1 by a 
particle from component 2 at a relative kinetic energy 
y2kT. x is the scattering angle. 

The self-diffusion coefficient D0 is defined as the 
limit of Z>i2 when components 1 and 2 become identical, 
and 0:12(7,̂ ) is taken to be proportional to the properly 
symmetrized differential cross section for the scattering 
of identical particles. Thus, for example, in pure 
orthohydrogen, the particles have nuclear spin 1=1 
and rotational angular momentum 7 = 1 , and Do has 
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It is shown that the first approximation to the spin-diffusion coefficient D of a gas at low temperatures 
involves a scattering cross section for distinguishable particles only, so that D is different from the self-
diffusion coefficient Do. Quantum symmetry effects show up in the second approximation to D but the cor­
rection to the first approximation is small. The theoretical values of D for gaseous hydrogen and gaseous 
He3 agree quite well with experimental results. 


